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VERTICAL VIBRATION AND ADDITIONAL DISTRESS
OF GROUPED PILES IN LAYERED SOIL

GEORGE MYLONAKISY? and GEORGE GAZETASY

ABSTRACT

Analytical solutions are developed for calculating the harmonic steady-state axial stiffness, damping, and internal
forces of pile groups embedded in multi-layered soil. Pile-soil interaction is represented through a dynamic Winkler
model, with frequency-dependent spring and dashpot moduli. Pile-to-pile interaction is taken into account analytical-
ly by considering the wave field originating along an oscillating (‘‘source’’) pile and the diffraction of this field by an
adjacent (‘“‘receiver’’) pile. In the case of uniform and two-layer soil profiles, closed-form expressions are derived for
both pile impedances and dynamic interaction factors between piles. A solution is finally presented for the additional
axial forces developed in piles due to pile-to-pile interaction. The predictions of the model compare well with results
of earlier studies, while its simplicity offers a versatile alternative to complicated numerical solutions.
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INTRODUCTION

Most of the methods developed in the last twenty five
years for pile dynamics are of essentially numerical na-
ture (Wolf and Von Arx, 1978; Kaynia, 1982; Waas and
Hartmann, 1984; Mamoon et al., 1990). These methods
treat the soil as an elastic continuum; they involve dis-
cretization of the domain or its boundaries leading to the
formation of large systems of equations and therefore to
significant computational effort. By contrast, some ap-
proximate wave propagation solutions pioneered by
Tajimi (1969) and Novak (1974) offer valuable insight
into the nature of pile-soil interaction (Takemiya and
Yamada, 1981; Nogami, 1983; Konagai and Nogami,
1987; Dobry and Gazetas, 1988). Recent reviews on the
subject have been presented by Roesset (1984), Novak
(1991), Gazetas et al. (1992), and Pender (1993).

Most of the simple solutions for pile groups make use
of the superposition method which is based on interac-
tion factors. This concept, proposed by Poulos in 1968
for static loads, showed that pile group effects can be as-
sessed by superimposing the interaction between only
two piles at a time. Static interaction factors would only
provide useful information on the dynamic response of a
pile group at relatively low frequencies. Indeed, depend-
ing on the frequency of vibration, the waves generated
along the centerline of an oscillating (‘‘source’’) pile may
arrive to the location of an adjacent (hereafter called

‘‘receiver’’) pile: (i) with exactly or nearly the same
phase, thereby imposing an additional displacement to
the receiver pile or, (ii) with phase lag larger than 90° im-
posing displacements of opposite sign on that pile.
Driven by a sequence of successive in- and out-of-phase
frequency regions, the dynamic stiffness of pile groups
may exhibit large peaks and valleys. This behavior is not
observed in solitary piles. The oscillatory nature of dy-
namic pile group impedances became known in the late
70’s, following the study by Wolf and Von Arx (1978).

Kaynia (1982) extended the superposition method to
dynamic problems by introducing complex-valued inter-
action factors accounting for both the amplitude and the
phase of the motion transmitted to a pile by a vibrating
neighboring pile. Following several subsequent studies,
Dobry and Gazetas (1988) derived an approximate
closed-form dynamic interaction factor for piles in a
homogeneous halfspace. Despite its simplicity, the
results of that method were in reasonable agreement with
more rigorous solutions (Novak, 1991; Wolf et al., 1992).

On the other hand, pile response in non-homogeneous
and layered soil has been the subject of a smaller research
effort (Nogami, 1983; Davies et al., 1985; Gazetas et al.,
1991; El-Marsafawi et al., 1992; Hijikata and Tomii,
1995). While these studies have shown that soil in-
homogeneity may have a profound effect on pile-to-pile
interaction, no closed-form expression for interaction
factors between piles in layered soil are available in the
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literature.

The distresst of piles in a group has been also scarcely
studied. Instead, presently used interaction-factor type
of solutions compute the distribution of axial load with
depth by considering the piles as solitary, but with the
head load determined from the pile group analysis. This,
of course, is incorrect because the waves generated by the
oscillating piles, apart from inducing additional settle-
ment, would also induce additional stresses, to grouped
piles in the form of additional shear tractions along their
shafts. Despite the fact that this effect (i.e. the additional
distress in piles due to pile-to-pile interaction) has been
recognized in some studies dealing with static loads
(Poulos, 1968; Randolph and Wroth, 1979), no simple
method is presently available to compute it under either
static or dynamic conditions.

The main objective of this paper is: (i) to outline a sim-
ple method for evaluating the dynamic impedance of
single piles in homogeneous soil and to extend it to an ar-
bitrarily multi-layered soil, (i) to develop a simple physi-
cal model for the dynamic interaction factors between
piles in multi-layered soil, accounting for the diffraction
of the attenuated waves by the “‘receiver’’ piles, and (iii)
to evaluate the additional distress developed in clustered
piles arising from pile-to-pile interaction.

Figure 1 illustrates the problem addressed in this

rigid pile cap ; Pg e'ot

paper: a group of m vertical piles penetrating » soil layers
underlain by a deformable base (homogeneous half-
space). The piles are cylinders with length L, diameter d,
modulus of elasticity E,, cross-sectional area A,, and
mass density p, providing mass per unit pile length
m=p,A,. They are subjected to a vertical harmonic force
Pgexp (iwt) transmitted through a rigid massless pile
cap which has no contact with the soil. The soil is mod-
eled as a multi-layered linear viscoelastic material. The
typical layer has a thickness 4, modulus of elasticity E,
Poisson’s ratio vs, mass density p,, and linear hysteretic
damping factor f; introduced through the complex elastic
modulus E¥=E; (1+2i8;).

The problem is analyzed in three consecutive steps: (1)
response of a single pile, (2) interaction between two
piles, (3) response of the pile group.

THE SINGLE PILE

In the seminal work of Novak (1974), the soil surround-
ing the pile is modelled as a Winkler medium resisting the
pile motion by continuously-distributed, frequency-de-
pendent springs, k., and dashpots, c,. The former ac-
counts for the stiffness soil provides to the pile while the
latter for the energy losses due to both wave radiation
and hysteretic dissipation in the soil. Although approxi-
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(a) The problem studied in this Paper. (b) Sign convention

t The word “‘distress’’ as used in this paper means the development of axial force and deformation in a pile.
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mate, the Winkler model is well accepted because it can
easily incorporate: (i) variation of soil properties with
depth, and (ii) variation of soil properties with radial dis-
tance from the pile due to installation effects and inelastic
soil behavior near the pile shaft. This paper studies the
effect only of vertical inhomogeneity [factor (i)] on the ax-
ial response of piles and pile groups. [Reference is made
to Michaelides et al. (1997), for ways to introduce radial
inhomogeneity in approximate modeling pile installation
and inelastic soil effects on the impedance of single piles
and pile groups.]

Based on the Winkler assumption, the complex-valued
dynamic impedance at the head of a harmonically-vibrat-
ing pile in a homogeneous soil stratum underlain by a
deformable base is derived as outlined in Appendix I:

EA Q+tanh (hA)
A=A G tann (h2)
in which the ‘“‘wave number’’ A and the normalized ‘‘tip
resistance factor’’ Q are given by:

[k tiwe,—ma?]? o= Ky
- E,A, R W

K, is a complex-valued impedance representing the verti-
cal soil reaction at the pile tip. The distributed frequency-
dependent spring and dashpots &, and ¢, can be taken
from available solutions by Novak et al. (1978),
Angelides and Roesset (1980), Gazetas and Makris (1991),
and others. This paper utilizes the finite-element-based
springs and dashpots of Gazetas and Makris (1991). K,
can be obtained from results published by Veletsos and
Verbic (1971), Gazetas (1983), Meek and Wolf (1993),

(1)

)

and others. In this work we utilize the solution by
Veletsos and Verbic (1971).

In the case of a layered soil, the pile response can be cal-
culated based on the response of a pile segment in a
homogeneous layer (see Appendix II), by forming 2 al-
gebraic equations (n is the total number of soil layers
penetrated by the pile) expressing the boundary condi-
tions at the pile top, bottom, and the interfaces.
However, an alternative formulation providing closed-
form expressions for pile stiffness in multi-layer domains
is presented herein. It is based on the repeated use of the
“‘fundamental’’ single-layer stiffness Eq. (1): starting
from the bottom layer n, and proceeding upwards. In a
sub-structuring sense, K, can be considered as a
‘‘spring’’ supporting the tip of the pile segment (n—1).
The stiffness atop the segment (n— 1) is, therefore, calcu-
lated through Eq. (1) but with a modified coefficient Q
equal to K,/ (E,A,A.-1). This is repeated, layer by layer,
until reaching the pile top. The whole procedure is ex-
pressed compactly by the following recursive relation:

Q;+tanh (h;4;)

K= B A h g b (i) ®)
in which Q; is given by
Kii
.Q,'= 4
E,A,A; “
and with boundary conditions
Kn+1=Kbs '%=Kl (5)

As an example, for a two-layered soil stratum, Egs. (3)-
(5) give:

AR+ tanh (h2A,)] + A [1+ €2 tanh (A,A4,)] tanh (7,4,)

«%zEpApil

Moreover, Eq. (6) can generate the impedance of a pile
embedded in a three-layered soil by simply substituting:

__13 Kb+EpAp/13 tanh (h3l3)
" M| E,ApAs+ K, tanh (B34s)

Apparently, explicit expressions such as Egs. (6) and (7)
have some distinct advantages over the numerical solu-
tions. A more complete set of closed-form expressions
can be found in the dissertation of Mylonakis (1995).

Pile impedances obtained from Eq. (6) are compared
in Fig. 2 with results obtained by the authors using the
rigorous formulation of Kaynia (1982). The close agree-
ment between the two methods should not surprise in
view of the basic validity of the main assumptions of the
Winkler model at high frequencies (Novak, 1991), and
the calibration of the spring values with those of rigorous
solutions at low (‘‘static’’) frequencies (Gazetas and
Makris, 1991).

()

DYNAMIC INTERACTION BETWEEN TWO PILES
Following the studies by Poulos (1968), Butterfield and

A1+ Q tanh (h,4,)] + A2[2 +tanh (4,4,)] tanh (h;4,) ©

Banerjee (1971), and Randolph and Wroth (1979) on stat-
ic pile-to-pile interaction, approximate methods were de-
veloped (Nogami, 1983; Sheta and Novak, 1982) for the
dynamic interaction between piles. These publications
were the first attempts to model pile-to-pile interaction
based on approximate wave-propagation solutions; they
are essentially numerical formulations involving infinite
sums of Bessel functions of complex argument and re-
quiring extensive computer calculations.

On the other hand, a simple closed-form dynamic inter-
action factor has been developed by Dobry and Gazetas
(1988). Since that model serves as a starting point for the
more elaborate method proposed in this paper, a brief
review is worth presenting: -

The fundamental idea is that cylindrical waves are emit-
ted from the perimeter of an oscillating ‘‘source’’ pile
and propagate in an essentially horizontal direction. This
hypothesis is similar to the Winkler assumption of
Novak, applied in pile-to-pile interaction rather than to
single pile response. The attenuation of vertical soil dis-
placement, U(s, z), at depth z and radial distance s from
the pile is written in dimensionless form as (Gazetas and
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Fig. 2. Dynamic stiffness and damping of a single pile in two-layer
soil: comparison of the Winkler solution with results obtained by
the authors using the rigorous numerical method of Kaynia (1982):
E,/E4=1000, L/d=20, hy/L=2/3, v,=04, p,/py=125,
Ps /pﬂ =1'25’ ﬁsl = 10%1 pﬂ.: 5%

Makris, 1991):

@

S 1)
Us, z) _H° (d «/1+2iﬂ5)

= = 8
2’ 2 /14218,

in which ay=cwd/ V; and HY( ) is the Hankel function
of zero order and second kind and f; is the hysteretic
damping ratio of the soil. A simpler alternative to Eq. (8)
is

_[2s\7' NEER '
W(S)~(7) exp[—(ﬁsﬂ)(g ?)ao &)

The real and imaginary parts of Egs. (8) and (9) are
contrasted in Fig. 3 for two different pile spacings. Their
agreement is very good and, as it will be shown later in
this paper, use of either function gives satisfactory predic-
tions for the interaction factors.
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Fig. 3. Attenuation function y(s) as function of dimensionless fre-
quency a,, for two pile separations: comparison between the
‘‘rigorous”’ plane-strain model (Eq. (8)) by Novak and the alterna-
tive expression (9), f,=5%

In order to generate an interaction factor, Dobry and

Gazetas (1988) introduced the following assumptions:
1. The pile is stiff enough compared with the surround-
ing soil (say, E,/ E;>500), so that the gradient of pile dis-
placement with depth is relatively small. This ensures the
(approximate) validity of the plane-strain Eqgs. (8)—(9).
2. Pile rigidity ensures that the cylindrical waves
emanate simultaneously from all points along the pile
length, even if not with identical amplitudes. Therefore,
in the case of a vertically homogeneous soil, the outward
spreading waves ‘‘strike’’ an adjacent pile simultaneous-
ly along its shaft.
3. A ““receiver’’ pile, located at a distance s from the os-
cillating ‘‘source’’ pile, follows exactly the attenuated
soil motion given by Eqs. (8)-(9). This implies that no in-
teraction was considered between the receiver pile and
the surrounding soil.

With these assumptions, the dynamic interaction fac-
tor is simply equal to the attenuation function w(s):

t Equation (9) is slightly different than that originally proposed by Dobry and Gazetas (1988). The constant (—1/2) appearing in the exponen-
tial term of Eq. (9) has been introduced to better match the boundary condition w(s=d/2)=1.
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a=y(s) (10)

Although just an approximation, this simple wave
model gives very satisfactory results for relatively stiff
piles in homogeneous soil (Dobry and Gazetas, 1988;
Novak, 1991; Wolf et al., 1992). In fact, the effectiveness
of the model is rather surprising, especially if one recalls
that several important parameters (i.e., the pile slender-
ness ratio, L/d, and the pile-soil stiffness ratio, E,/E;)
are not included in the model. However, the validity of
Eq. (10) gradually deteriorates with both increasing in-
homogeneity of the soil and increasing slenderness of the
pile.

A New Proposed Model for Pile-to-Pile Interaction

To overcome the limitations of the Dobry-Gazetas
(1988) model—in particular those arising from assump-
tions (2) and (3)—an improved model is presented here-
in, with reference to Fig. 4. It involves the following
three steps:
STEP I: The complex-valued displacement profile along
a single ‘‘source”’ pile, W;;(z), in a layered soil is deter-
mined using the procedure described in the preceeding
section or any other analytical approach (a transfer-
matrix formulation is outlined in Appendix II).
STEP 2: Cylindrical waves are generated from each
depth along the ‘‘source’’ pile with initial amplitude and

phase equal to the complex function Wi;(z). With the
soil consisting of a number of homogeneous horizontal
layers, it is assumed that the waves propagate in an essen-
tially horizontal manner within each layer. This implies
that the radial spreading of waves, although different for
each layer, still obeys the cylindrical attenuation law of
Eqgs. (8)-(9). Under these assumptions, the ‘‘free-field”’
vertical soil displacement at a depth z and distance s from
the periphery of the source pile is given by:

U(s, 2)i=w(s);Wu(z); (11

in which j denotes the number of soil layer. (This is in es-
sence a ‘‘separation of variables’’ approximation.)

STEP 3: If a vertical “‘receiver’’ pile carrying no load at
its head is located at a radial distance s from the source
pile, it does not follow the free-field motion of Step 2; its
axial stiffness combined with the soil reaction at the pile
base gives rise to an interaction between this (‘‘receiver’’)
pile and the surrounding soil, leading to diffraction of the
arriving wave field. Thereby, pile displacement is differ-
ent (usually smaller) than the free-field displacement
given by Eq. (11). To account in a simple yet realistic way
for this diffraction, the receiver pile is modelled as a
Winkler beam in which the excitation U(s, z) is applied
at the supports of the distributed soil springs and
dashpots. The mechanics of this loading is in a sense the
reverse of that of Step 1. In Step 1 the “‘source’’ pile in-

[P
<

Loaded "source" pile

!

) Pile-Soil
Location of Springs and
"receiver" pile Dashpots
Wu(0)
Response of
receiver pile:
Cr k; Cj W, (2)

radially-spreading S waves

support motion

imposed on base impedance :
""receiver” pile: Ky
‘V(S)j Wu(z)j

Fig. 4. Schematic illustration of the proposed model for computing the influence of a head-loaded ‘source’’ pile upon the adjacent ‘‘receiver’’
pile carrying no load at its head, in layered soil. The response of the head “‘receiver’’ pile to a unit displacement of the head of the source pile at
a specific frequency defines the interaction factor between the two piles
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duces displacements in the soil through its ‘‘reacting”’
springs and dashpots, whereas in Step 3 the soil induces
displacements on the receiver pile through its ‘‘transmit-
ting”’ Winkler springs-dashpots. A similar 3-step model
was proposed by Makris and Gazetas (1992) who studied
the lateral interaction of infinitely-long fixed-head piles
in homogeneous soil. In this work we analyze the axial in-
terplay between two piles, accounting for finite pile
length and layered soil.

For a receiver pile the dynamic equilibrium of an
infinitesimal pile segment yields the governing equation:

2
EpApi%’z—(z—)+ maw*Wa(z) — (k. +iwc,)
X [Wa(z)—U(s, 2)]=0 (12a)
where
U(s, 2)=w(s)Wn(z)=w(s)(Ane*+Bye ) (12b)

k. +iwc, w(s)

k,—mo*+iwe, 2

Wa(z)= AL
pAp

is the motion induced by the source pile, obtained for
each soil layer from Step 2; A, and By are integration
constants to be determined from the boundary condi-
tions of the source pile. The solution of Eqs. (12a) is:

k,+iwc;
20E,A,
+A21 e“ +Bz1 e"z

Wa(z)= w(s)z(—Auet*+ By e )

(13)

in which A4,; and B are new integration constants to be
calculated from the boundary conditions of the receiver
pile (i.e., zero force at the pile head and continuity of
force and displacement at the various interfaces); E, and
A, are the modulus of elasticity and the cross sectional
area of the pile, respectively.

As a first application, the response of a receiver float-
ing pile in a homogeneous profile is obtained in closed
form:

(Az cosh (Az) —sinh (Az))— Az sinh (Az)

2hA +sinh (2hA) + 22 [sinh (2hA) —2hA] +22Q2 [cosh 2hA)—1]

sinh (2AA)+ Q7% sinh (2h1)+2Q cosh (2k4)

cosh (A2) | W11(0) (14)

The ratio W, (z=0)/ W1;(z=0) is by definition the desired interaction factor; it can be written as a product of two

complex-valued functions:

a=y(s){(hA, 2)

where the function {={(kA, ) is given by

k;+iwc;

(15a)

2hA+sinh (2hA)+ Q2 [sinh (2hA) —2hA) +2Q [cosh (2hA) —1]

k,—mw*+iwc,

Of these two functions, y denotes the induced free-field
displacement, while { stands for the effect of the diffrac-
tion of the arriving wave field due to the rigidity of the
pile and the interaction between pile and surrounding soil
[Note that Dobry and Gazetas (1988) neglected pile-soil
interaction (i.e. Step 3) and (implicitly) assumed {=1.]

For an end-bearing pile, Q— o0, Eq. (15b) simplifies
to:

ket iwce,
T k,—mo?t+iwe, 2

w(s) [ 2hA ] 16)

1 —_
sinh (2h4)
For the special case that the pile is completely free of reac-

tion stress at its tip (i.e., not supported by soil), £ vanish-
es and

_ k. +iwc,  w(s) 2hA

B sinh (2hA)

For an infinitely-long pile, 2— 0, all the preceding equa-

tions converge to the remarkably simple expression:

_ w(s)
k,—mw*+ioe, 2

an

k,—mw*+iwe, 2

k;+iwc,

(18)

The static values of Eq. (15b) are plotted in Fig. S for
various ‘‘tip resistance factors’’, €2, in terms of the dimen-
sionless function {=«/w(s). Note that ¢ is always less

2 sinh (2hA) +2Q°? sinh (2hA) +4Q cosh (2h4)

(15b)

than unity expressing solely pile-to-soil interaction, and
approaches 1/2 as pile length increases towards infinity.
The basic expression of the simplified Dobry-Gazetas
(1988) model, {=1, is also depicted on the graph. Notice
the symmetry of the interaction factor of a pile unsup-
ported at the tip (P,=0) to that of a fully end-bearing
(W,=0) pile, with respect to the infinitely-long pile. [The
average of the two factors equals the third, as is evident
in Egs. (16)-(18).] Further discussion on static pile-to-
pile interaction is given in Mylonakis and Gazetas (1997).

Interaction between Pile Bases

In addition to the shaft-to-shaft pile interaction, a dis-
placement field exists around the pile base. As a result, in-
teraction will also develop between pile bases. Its impor-
tance is examined herein. Assuming that the pile base
behaves as a rigid circular disk on the ‘‘surface’’ of the
underlying halfspace, the soil displacement attenuates
away from the pile tip in the following way (Meek and
Wolf, 1993):

Uts, L).,i i+ _Ifs_ i__1_> 19
W, = €%p —(i+8) VRao( - (19

w(s)= P

in which V% denotes the propagation velocity of Rayleigh
waves.
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Fig. 5. Normalized pile-to-pile interaction factor in terms of the devel-
oped ‘“‘diffraction’’ function {=o/y(s) [Eq. (15b)], for piles em-
bedded in single-layer soil and for different support conditions at
the pile tip

Assuming that the attenuated settlement w,(s)W; acts
on the base of the soil spring supporting the tip of the
receiver pile (Fig. 4) the new boundary condition at the
pile tip would give rise to a complementary base-to-base
interaction factor, as(s). As an example, in the particular
case of homogeneous soil, a(s) can again be expressed
as the product of two functions:

ar=W5(8)Ep(hA, Q)

(20a)

where the function {,={,(#A, Q) is given by (Mylonakis,
1995)

&

2Q

T 20 cosh (2h2) +sinh (2EA)(Q2+1)

(20b)

The overall interaction factor between the piles can be
taken approximately equal to the sum of the shaft-to-
shaft component o plus the base-to-base component «
(an idea introduced by Randolph and Wroth, 1979, for
pile statics.)
It is easy to show that, for the frequency range of in-
terest: (i) the magnitude of w,(s) is controlled by the stat-
ic term, d/(ns), which decreases linearly with radial dis-
tance s, and (ii) {; is much smaller than unity. Thus, for
L/d=20ands/d=~2, Eq. (20a) gives o, magnitudes of the
order of 1072 or less, while for larger spacings o, is even
smaller. This means that base-to-base interaction be-

0.8
Real part Present solution (Eqns 15& 8) —
- Dobry & Gazetas (Eqns 10& 9) —o-
Rigorous solution &
04}
int
Poe A
1”: 0.0
3 \{%
-0.4 - Imaginary part
L/d=20
0.8 1 | | 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.8
[ Real part
04
L o0
3 %
L
- -0.4 |- Imaginary part
-
S L/d=40
-0.8 1 1 1 1 |
0.0 02 0.4 0.6 0.8 1.0 12
Qp=od/ Vg

Fig. 6. Interaction factors between two piles in homogenous soil with s/ d=2 and L / d=20, 40: comparison of the results obtained by (i) the devel-
oped Eq. (15), (ii) the simplified solution of Dobry and Gazetas [Eq. (10)], and (iii) results obtained by the authors using the rigorous method
of Kaynia (1982), E,/E,=1000, v,.=0.4, p,/p,=1.25, B,.=5%
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tween two adjacent piles is obviously negligible and will
not be further discussed in this paper.

Figure 6 compares the interaction factors as functions
of frequency, for a pair of closely-spaced piles (s/d=2)
in homogeneous soil, obtained: (i) with the proposed
method [Eq. (15)], (i) with the Dobry-Gazetas (1988)
model [Eq. (10)], and (iii) with the rigorous formulation
of Kaynia (1982). The Dobry-Gazetas interaction factor
predict quite well the interaction between the short (L/
d=20) piles, but its performance deteriorates for longer
(L/d=40) piles. By contrast, the method developed here-
in, taking into account the interaction between soil and
passive pile (i.e. Step 3), leads to an excellent comparison
with the rigorous results.

The accuracy of the proposed solution is further illus-
trated in Figs. 7 and 8 for three different pile-to-pile spac-
ings and the same soil conditions as in Fig. 6. Equation
(15), associated with either Eq. (8) or Eq. (9), matches
reasonably well the rigorous results in the whole fre-
quency range 0<ap<1.

Pile-to-Pile Interaction in Multi-Layered Soil
In the spirit of the recursive expression developed for

0.8
Present solution (Eqgns 15 & 8)
n AS /d=2 — — Present solution (Eqnf 15&9)
A O O  Rigorous solution
04
w
N
3
— 0.0
[1]
[}
1d
04 |-

0.6 0.8 1.0

Imaginary a(s)

a,=0d/V,

Fig. 7. Interaction factors between two piles in homogeneous soil for
various pile separations s/d: comparison of the derived Eq. (15)
with results obtained using the rigorous solution of Kaynia (1982),
L/d=20, E,/ E;=1000, v,;=0.40, p,/p,=1.25, §;=5%

the single-pile impedance, an analogous formulation is
presented herein providing closed-form interaction fac-
tors in multi-layered soil. To this end, the arbitrary
segment i of the receiver pile is considered free head, sup-
ported at the base by a “‘spring’’ representing the stiff-
ness of the receiver pile below this segment. This element
is excited:

(1) along its shaft by the corresponding element i of the
source pile

at its base by the displacement transmitted from be-
low (i.e., due to the response atop the ‘‘receiving’’
element i+1).

Combining these two effects leads to a ‘‘segmental’’ inter-
action factor o; (i.e. atop segment i), recursively ex-
pressed as a function of «;+;:

ai={(hidi, 2)w(5)i W1 (0);
+ Qi+1 [COSh (h,l,) —sinh (h,l,).Q,] (21)

where ( is the diffraction function (Eq. 15b). W;(0); is
the pile displacement atop the ‘‘source’’ segment i, deter-
mined in Step 1. The first term in Eq. (21) expresses com-
ponent (1) while the second term expresses component
(2). Ultimately, however, both components express the in-

@

0.8
—— Present solution (Eqns 15 & 8)
L — — Present solution (Egns 15 & 9)
AOD Rigorous solution
Py s/d=2
0.4
——
”n
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3
—. 00
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(]
14
04
0.8 A - | 1
0.0 0.2 0.4 0.6 0.8 1.0
1.2
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0.8 .
constant
D
B 04
Py
& L
=
o
o 0.0
E |
04 |
08 | L | !
0.0 0.2 0.4 06 0.8 1.0
a,=ad/V,
Fig. 8. Interaction factors between two piles in homogeneous soil for

various pile separations s/d: comparison of the derived Eq. (15)
with results obtained using the rigorous solution of Kaynia (1982),
L/d=40, E,/E,~1000, v,=0.40, p,/p,=1.25, f,=5%
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teraction between the shafts of the piles. Starting from

9

In Figs. 9 to 11, Eq. (22) is graphically compared

pile bottom, Eq. (21) is applied repeatedly, layer after lay-
er, until reaching the pile top, whence the desired interac-

tion factor is obtained.

As an example, for two interacting piles in a fwo-
layered soil, Eq. (21) gives the following analytical expres-
sion for the interaction factor:

a=y(8)(hir1, 1)+ v2(s)(h2hz, 2)

where

1= |7

20,
22a
*30.Ch Ghin+sh chin@i+ny 3
A2 Q+Th (ki K
2 ( 2 2) Q: b (22b)
7 1+Q Th (k) E A

Sh( ), Ch( ), and Th( ) stand for the hyperbolic
trigonometric functions sinh ( ), cosh ( ), and tanh
() respectively. It is noted that, in the realm of the sim-
plifying assumptions of the model, Eq. (22) is an ‘‘ex-
act’’ solution. By setting #,=0, Eq. (22) duly reduces to

the single-layer Eq. (15).

0.8

Real a(s)

- Present solution (Eqns 22 & 8)
— ~ Present solution (Eqns 22 & 9)
Rigorous solution

A O O

Imaginary o(s)

Fig. 9.

0.4 0.6 0.8 1.0

Interaction factors for piles in two-layer soil, V,,/V,=1/2,

for various pile separations s/d: comparison of the derived Eq.
(22) with results obtained using the rigorous solution of Kaynia

(1982), L/d=20,

hy/L=2/3,

E,/E,=1000, v,=0.40,

pp /Psz=1-25’ Ps1 /pﬂ=0'80’ ﬂ.ﬂ:l‘)%’ p.rZ:S%

against results obtained by the authors using the rigorous
numerical formulation of Kaynia (1982). Figure 9 refers
to a two-layered soil profile with V,/V,=1/2 (which
corresponds to a ratio of shear moduli of about 4), and a
pile ““embedment”’ ratio 4, /L=2/3. Compared with the
homogeneous soil (Fig. 7), the presence of the stiff bot-
tom layer makes the interaction factor considerably
smaller and less sensitive to frequency. Evidently, the
proposed method (using either Eq. (8) or Eq. (9))
reproduces adequately the details of the rigorous curves.

In Fig. 10, Vi / Vg equals 1/4, i.e. the lower layer is
somewhat more than 16 times stiffer than the upper. The
interaction curves are quite flat, equal to merely 30%-
40% of the corresponding ‘‘homogeneous’’ values (see
Fig. 7). Eq. (22) is again in satisfactory accord with the
numerical results.

Figure 11 refers to a continuously inhomogeneous
profile is examined with modulus proportional to depth;
at the tip (z=20d): E,(LY=E,/500. To analyze pile-to-
pile interaction, the analytical expression Eq. (21) is uti-
lized with the soil profile discretized in 10 homogeneous

0.4

— Present solution (Eqns 22 & 8)
— - Present solution (Eqns 22 & 9)
Rigorous solution

A O O

Real af(s)

Imaginary «(s)

0.2 0.4 0.6 0.8 1.0

ag=0d/ Vg

Fig. 10. Interaction factors for piles in two-layer soil, V,,/V,=1/4,
for various pile separations s/d: comparison of the derived Eq.
(22) with results obtained using the rigorous solution of Kaynia
(1982, L/d=20, h/L=2/3, E,/E;=1000, v,=0.40,
Pp/ P2=1.25, p/ p2=0.80, B;=10%, B,=5%
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08 Present solution, (Eqns 21 & 8) 18
resent sojution, (qns
| ——- Present solution, (Eqns 21 & 9)
A OO Rigorous solution 2-pile group

Real «a(s)

0.0 0.2 0.4 0.6 08 1.0

linearly increasing
modulus

Imaginary «(s)

08 | ] I 1
0.0 0.2 0.4 0.6 0.8 1.0
a;=od/V (L)
"~ Fig. 11. Interaction factors between two piles in a inhomogeneous

soil with linearly increasing modulus E(z)=E,z /500L: compari-
son of the present solution versus results obtained using the
rigorous method of Kaynia (1982), L/d=20, v,=0.40,
Pl ps=1.50, . =5%

layers. Despite that the simplifying assumption of
purely-horizontal wave propagation may in principle be
less accurate in this case, for s/d=2 and s/d=5 the com-
parison with the rigorous results is very good. This
means that at such distances the effect of the likely curva-
ture of the wave rays is not significant. In contrast, for s/
d=10 and a,>0.20, the influence of the non-horizontal
wave propagation becomes evident: while the rigorous in-
teraction factors are essentially zero, the proposed solu-
tion predicts values between +0.10 and —0.10. For-
tunately, at such large distances, pile-to-pile interaction
is too small for the differences to be of major sig-
nificance.

RESPONSE OF PILE GROUPS

According to the superposition method, the response
of m identical piles connected through a rigid cap is writ-
ten as (Poulos, 1968):

pg=§; P=[{1}TA]"{1}]Do=%:Ds  (23)

imaginary part

04F A

~—— Present solution
A Nogami (1983)
@  Static solution of
) Poulos & Davis (1980)

0.0 04 08 12
a=0d/V,

Normalized impedance : 9% / 2EL

00 04 0.8 1.2
g =o0d/V,

Fig. 12. Vertical dynamic stiffness and damping of 2 rigid piles spaced
at s=5d in homegeneous seil on rigid rock at H=2L: comparison
with: (i) the static solution of Poulos, and (ii) the approximate dy-
namic plane-strain solution of Nogami; L/d=37.5, v,=0.40,
P,/ ps=1.50, f,=2.5%

in which: Pg is the load of the cap; A4 is an m by m com-
plex matrix with A (i, j) being equal to the interaction fac-
tor between the piles i and j, divided by the stiffness of
the single pile; Dg=D; is the cap displacement and % is
the complex impedance of the group.

Figure 12 compares the proposed method with results
of the plane-strain solution of Nogami (1983) for two per-
fectly-rigid piles embedded in a homogeneous stratum of
thickness H=2L and spaced at s=5d. Since both
methods are based on superposition of cylindrical wave
fields, their predictions at the high-frequency range
(@0>0.5) are very similar. In the low-frequency range,
however, the predictions for the real part of the im-
pedance diverge. The solution of Nogami underestimates
the group stiffness leading eventually to zero static stiff-
ness. By contrast, the proposed method seems to provide
a satisfactory static stiffness, as inferred from the agree-
ment with the static solution of Poulos and Davis (1980).

Figure 13 refers to the group efficiency factor [defined
as the dynamic impedance of the pile group divided by
the sum of the individual static stiffnesses of the piles].
The figure compares the results obtained with the
proposed method against the boundary-element results
of Mamoon et al. (1990), for a 3x3 pile group in
homogeneous halfspace. The two methods are in good ac-
cord, although for s/d=35 the proposed method gives
slightly smoother peaks.

The significance of soil layering on the impedance of a
closely-spaced 3 X 3 pile group is illustrated graphically in
Fig. 14 for a two-layered soil. In addition this figure con-
trasts the results calculated with the interaction factors
from in Figs. 7, 9, and 10, and with the rigorous solution
of Kaynia (1982). The main parameter is the shear-wave
velocity ratio Vi, / V of the two layers. Evidently, this ra-
tio has an important effect, especially at high frequencies.
Notice that a pile group in a homogeneous halfspace radi-
ates more effectively than in a stratum with soil layers of
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Present solution

A O Mamoon et al (1990)

Real part of 97 / 9 Ftatic

»
T

N
T

Imaginary part of 97g / 9 Ftatic

0.0 0.2 0.4 06 0.8 1.0
ag=w0d/V,

Fig. 13. Vertical dynamic stiffness and damping of a 3 X3 pile group
in a homogeneous halfspace: comparison of the proposed model
with results form the rigorous solution of Mamoon et al.;
L/d=15, E,/ E;=1000, v,=0.40, p,/p,=1.40, §,=5%

very different stiffnesses. The accord with the rigorous
method cannot be overstated.

ADDITIONAL AXIAL FORCE ALONG APILEIN A
GROUP

In the superposition method the actual group of m
piles is conceptually replaced by two fictitious pile sets:
(i) a set of m ““source’’ piles carrying the actual pile loads
P;(i=1,2,---m), and (ii) a set of m “‘receiver’’ piles (car-
rying no load at their heads), but subjected to the waves
generated by the ‘‘source’’ piles. Therefore, each actual
pile in the group is conceptually represented by two sub-
stitute piles: the ‘‘source’’ pile and the ‘‘receiver’’ pile.

To account for pile-to-pile interaction, the superposi-
tion methods calculate the pile group impedance by add-
ing the displacements atop the heads of each ‘‘source’’
and “‘receiver’’ pile pair. However, when calculating axi-
al forces on piles, currently-used superposition solutions
consider only the axial forces developed along the
““source’’ piles. The axial forces developed along the

Present solution (Eqns 23, 22, 9)
Rigorous solution

F A 0O

Real part of % / 9 Faatic
o
T

-2

2.0

1.0 +

imaginary part of 925 / 9 Hetatic

0.0
0.0 0.2 04 0.6 0.8 1.0

a=0d/ Vg

Fig. 14. Vertical dynamic stiffness and damping of a 3 x 3 pile group
in two-layer soil for various shear-wave velocity ratios V/V:
comparison of the present solution with results obtained using the
rigorous method of Kaynia (1982); s/d=2, L/d=20, h;/L=2/3,
E,/E4=1000, v,=0.40, p,/p,=1.25, p,y/p,=0.80, f;;=10%,
Ba=5%

“‘receiver’’ piles are overlooked. These additional forces
(hereafter called ““additional pile distress’’) are generated
by the incoming waves in the form of dynamic shear
stresses along the receiver piles. Despite the fact that in
rigorous numerical formulations the additional pile dis-
tress is implicitly accounted for, its potential importance
remains completely unexplored. The proposed model pro-
vides an simple way to calculate approximately the axial
force profile along the grouped piles, including the ‘‘addi-
tional pile distress’’. For an arbitrary pile i, the proce-
dure involves the following steps:

1. Determine the axial force profile along the
“‘source’’ pile. Having determined the cap settlement Dg,
the distribution of the cap load onto the individual piles
is obtained through Eq. (23). The resulting load P; atop
pile i is the required boundary condition for calculating
the force distribution, P:(z), along the ‘“‘source’’ pile i.
This can be done by using any pertinent analytical ap-
proach (such as the transfer-matrix formulation of Ap-
pendix II.)

2. Determine the displacement at the head of the
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““receiver’’ pile. If pile i were isolated, the vertical force
P; acting at the pile head would have produced a
“source’”” displacement W;=P;/ # atop the pile.
However, the actual cap displacement, Dg, is in general
different than W;. The difference is the (positive or nega-
tive) additional displacement due to pile-to-pile interac-
tion. Accordingly, an ‘‘additional’’ displacement SW;
can be defined which is equal to the difference between
the actual cap displacement D¢ and the ‘“source’” dis-
placement W;:

OW;=Ds— W, 24

3. Determine the force and displacement profiles
along the ‘‘receiver’’ pile. The additional displacement
OW; and the zero-force condition atop the receiver pile
are the required boundary conditions for determining the
additional force, dP;(z), and displacement, SWi(z),
along that pile. To this end, Eq. (13) is rewritten in the
following transfer-matrix form:

{am(z)}_ . {5W,~} S )“]{W,}
sPizy) TN o+ Q@I
(25)

where [L] and [Q] are 2 X 2 complex matrices given in Ap-
pendix II. The sum in the right-hand side of Eq. (25) cor-
responds to the forcing term induced by the ‘‘other’’
(m—1) source piles. From this equation, the response
along the “‘receiver’’ pile i can be readily calculated for
any depth z.

4. Determine the total force and displacement
profiles along the pile. The total axial force, Py (z);,
along pile i is written as sum of the “‘source’’ force Pi(z),
plus the additional ‘‘received’’ force dP:(z):

Pio(2)i=Pi(2) +0P(z) (26)

As an example, in the case of a simple two-pile group
in homogeneous halfspace the additional force JP along
each pile is obtained in closed form:

Poy(s) Ey,A,
4 k,—mo*+iwe, 2
k. +iwc,

k. +iwc, Ao
[sinh (A1)

oP(z)=

+ Az cosh (Az)]— Az sinh (Az)

k,—mw*+iwc,

E,A,A .
-2 Z {(hA) sinh (Az)} 27
in which the single-pile stiffness, £, is obtained from Eq.
(1) and the diffraction function, {(#1), from Eq. (15b).

Figure 15 plots the distribution with depth of axial pile
force in an edge pile of a 3x3 group. The curves cor-
respond to the amplitudes of: (i) the axial force P(z) due
to only the load atop the pile; (ii) the additional axial
force 6P(z) due to pile-to-pile interaction; and (iii) the
total axial force P, (z). A general conclusion is that the
additional axial force, dP(z), is only a fraction of the
force P(z) from the load atop the pile. Notice, however,
that at relatively low frequencies (2,=0.10), which may
be of particular interest in earthquake engineering, 6P(z)

—— Force P(2) due to head load only

—o— Additional force 8P(2)
due to pile—to--pile interaction

Total force Py (2) = P(2) + 8P(2)

z/d

Normalized depth below the surface:

0.0 0.4 0.8 1.2
P(z)/P

average

Fig. 15. Amplitude of the dynamic distribution of the axial force
along an edge pile in a 3 X 3 group in homogeneous halfspace, for
three different frequencies; E,/E,=1000, L/d=20, v,=0.40,
s/d=5

near the base of the pile may exceed P(z). This implies
that because of pile-to-pile interaction the load transmit-
ted through the pile tip increases by a factor of 2 or more.

It is also worthy of note that at higher frequencies P(z)
and JdP(z) may be out of phase (see the case of a,=0.50
in Fig. 15)-apparently, the result of negative interaction
factors prevailing in the group. (This happens when the
‘“average’’ distance between piles is about one-half of the
wavelength.) Additional discussion can be found in
Dobry and Gazetas (1988) and in the dissertation of
Mylonakis (1995).
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CONCLUSIONS AND LIMITATIONS

A simple physical method is presented for the dynamic
response and internal forces of single piles and pile
groups in homogeneous and layered soil. The method is
based on a generalized dynamic Winkler model in con-
junction with a ‘‘wave interference’’ solution for pile-to-
pile interaction. The method permits the interaction fac-
tors for two-layered soils to be obtained in closed-form,
and valuable insight to be gained in the physics of the
problem. Dynamic interaction factors and group stiffness-
es calculated with the proposed method are in convincing
agreement with more rigorous solutions.

Limitations of the model stem from the simplifying as-
sumptions of soil linearity (which leads to an upper-
bound of the possible pile-to-pile interaction effect), and
perfect bonding at the pile-soil interface. Moreover the
superposition principle for pile groups is assumed valid
for all pile groups-an assumption which may not be of
sufficient accuracy when dealing with large closely-spaced
pile groups, or when the piles are socketed in a very stiff
bearing stratum, or when strongly non-linear soil effects
dominate.
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APPENDIX I: DERIVATION OF DYNAMIC IM-
PEDANCE AT THE HEAD OF A
SINGLE PILE IN HOMOGENE-

OUS SOIL STRATUM

Modeling the problem as an axially loaded beam sup-
ported on Winkler springs leads to the following differen-
tial equation:

d*w(z) .

E,,A,,—~dz—2-+mco2W(z)—(kz+1wcz) W(z)=0 ((-1)
where W(z) denotes the axial displacement of the pile.
The general solution of Eq. (I-1) is

W(z)=Ae**+ Be d-2)

where A is given by Eq. (2) in the text. To eliminate the in-
tegration constants 4 and B, we enforce the boundary
conditions at the top and bottom of the pile

z=0: W(0)=1 exp [iwt] (I-3)

du
z=L: K,W(L)= —E,,A,,( —) (I-4)
z=L

dt

After straigthforward algebraic calculations we obtain:

P0) E,A,A[K}cosh (hA)+E,A,A sinh (hA)]
“W©)  E,A, cosh (k) + K, sinh (h2)

which reduces to the expression of Eq. (1) using the trans-

formation of Q given in Eq. (2). More details can be
found in Mylonakis (1995).

d-5)

of motion, W11(z)=Ay; exp [Az] + By, exp [~ Az] (see Ap-
pendix I), for each homogeneous layer while imposing
the continuity of forces and displacements at each inter-
face, we take:

{ Wii(h)

} =[L]b[L]n[L]n_l-..[L]Z[L]l {Wn(O)}
Pyn)) ,, |

P (0)
(1I-1)

where the transfer matrices [L], and [L); are given by:

[L]= [ cosh (A;4) —(E,ApA;)~'sinh ()Lihl-)]
E,A,A; sinh (1:h;) cosh (Ah;)
(I1-2)
[L],= [1 _K”_l] (I1-3)
o 1

Enforcing the boundary conditions Wi (h),,=0 and
W(0):=1, the stiffness of a solitary pile is easily ob-
tained from (II-1) as # =Py;(0);. Moreover, for a given
force atop the pile, pile response at the bottom of any lay-
er j can be calculated as:

{ Wu(h)

—-K1
Pu(h)} =[L]j[L}=¢ - - [LLIL]s { 1 } Py (0)

j

(11-4)

In the case of two interacting piles, the transfer matrix

equation connecting the top and bottom of an arbitrary
segment of the ‘“‘receiver’’ pile is (Mylonakis, 1995):

Wa)) W11 (0) +IL W2(0) LS
APPENDIX II: TRANSFER MATRIX FORMULA- Po(h) =10l Pu)/ (L) P2 (0) )
TION ' !
For n soil layers, repeating the solution of the equation in which [L] is given by Eq. (I-2) and [Q] by
" ginh (k) 1 [h h (k) sinh (hd.-)]
- sin ili ; COS h) —
: y(s) EpA, (EpAp)hi Ai
[Qli= (kz,-+1wczi) _21_ ) (11-6)
' h;A; cosh (l’l,/‘{.,) +sinh (h,ll) - [ sinh (h,/i,)
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